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Introduct ion 

i n  such a' way a s  t o  provide a usefu l  background t o  cons idera t ion  of the  production of  
chemical by-products. I n  a d d i t i o n  some deduct ions w i l l  be  drawn from s t r u c t u r a l  
knowledge about the probable c o n t r i b u t i o n  made by d i f f e r e n t  coa l  components and by 
d i f f e r e n t  p a r t s  of the  s t r u c t u r e  t o  t h e  v o l a t i l e  mat te r  evolved on carbonizat ion.  
Since the survey has  only t h i s  l i m i t e d  objec t ive ,  no at tempt  w i l l  b e  made t o  t r e a t  
the subjec t  e haus t ive ly ;  and s ince  d e t a i l e d ,  f u l l y  documented, reviews have appear- 
ed recently'", a f u l l  bibl iography i s  not  provided. 

The purpose of t h i s  paper i s  t o  survey present  knowledge of the  s t r u c t u r e  of c o a l s  

Examination of a sample of c o a l  with t h e  naked eye o r  under t h e  microscope 
revea ls  t h a t  the mater ia l  is apparent ly  heterogeneous. There a r e  bands of d i f f e r e n t  
re f lec tance  running through the coal ,  and even minute a r e a s  scanned microscopical ly  
show a v a r i a t i o n  of o p t i c a l  p r o p e r t i e s ;  moreover, t h e r e  a r e  regions showing var ious 
types of f o s s i l i z e d  p lan t  remains. These components have been c l a s s i f i e d  i n  var ious 
ways, and there  i s  no u n i v e r s a l l y  agreed system; moreover, the  s u b j e c t  i s  complex 
s ince  a l a r g e  number of a l l e g e d  components have been d is t inguished .  
i s  used i n  recogni t ion of the  f a c t  t h a t  the s i g n i f i c a n c e  of a component can only be 
es tab l i shed  t o  the s a t i s f a c t i o n  of coa l  s c i e n t i s t s  a t  l a r g e  i f  i t  has been separated 
phys ica l ly  and shown t o  d i f f e r  apprec iab ly  i n  chemical and phys ica l  p r o p e r t i e s  and 
i n  carbonizat ion behavior from m a t e r i a l  assoc ia ted  with i t  i n  t h e  whole coal .  The 
r e a l  s ign i f icance  of many components has not ye t  been e s t a b l i s h e d  i n  t h i s  way. 

The term "alleged" 

For present  purposes i t  w i l l  be s u f f i c i e n t  t o  p o s t u l a t e  t h a t  bituminous coa ls  
a r e  composed of th ree  major "maceral" groups, which, i n  the  common European terminol- 
ogy a r e  known a s  v i t r i n i t e ,  e x i n i t e  and i n e r t i n i t e .  The term " i n e r e i n i t e "  r e f e r s  to 
components i n e r t  i n  carboniza t ion ;  " i n e r t "  does not  imply t h a t  t h e  m a t e r i a l s  undergo 
no chemical react ion,  only t h a t  they do not s o f t e n  o r  swell on h e a t i n g  and c o n t r i b u t e  
l i t t l e  t o  the  v o l a t i l e  mat ter .  V i t r i n i t e  i s  q u a n t i t a t i v e l y  t h e  most important 
maceral, accounting f o r  probably 60-80% of most worked c o a l s ,  and it i s  the  mater ia l  
p r i m a r i l y  responsible  f o r  t h e  c h a r a c t e r i s t i c  coking behavior of h igher  rank bituminous 
coals .  Coals r e l a t i v e l y  r i c h  i n  the  o t h e r  components a r e  known, but  they a r e  r a r e  
i n  the U.S.A.;  nevertheless ,  even i n  minor amount, they can make s i g n i f i c a n t  con- 
t r i b u t i o n s  t o  the p r o p e r t i e s  of t h e  whole coal .  

In  what follows, the s t r u c t u r e  of v i t r i n i t e s  w i l l  b e  considered f i r s t .  So f a r  
a s  poss ib le  the conclusions s t a t e d  w i l l  be based on work with pure macerals, b u t  
some evidence r e l a t i v e  t o  v i t r a i n s  (br ight  bands of c o a l  seams, normally containing 
80-95% v i t r i n i t e )  w i l l  be used where i t  seems improbable t h a t  t h e  c h a r a c t e r  of broad 
q u a l i t a t i v e  conclusions could be a l t e r e d  by the  presence of small amounts of petrograph- 
i c  impurity. 
d i f f e r e n c e s  between them and o t h e r  macerals  w i l l  be reviewed;, a t  t h i s  po in t  some 
comments w i l l  be made on the sub-components of t h e  main maceral  groups. 

A f t e r  the  cons idera t ion  of v i t r i n i t e s ,  a v a i l a b l e  evidence on s t r u c t u r a l  

The St ruc ture  of V i t r i n i t e s  
It has long been bel ieved t h a t  v i t r a i n o u s  c o a l s  a r e  predominantly aromatic i n  - 

s t r u c t u r e .  
the  presence of c e r t a i n  bands i n  t h e i r  i n f r a - r e d  spec t ra .  However, t%e fu\3e% 

The p a r t l y  aromatic na ture  of c o a l s  i s  e s t a b l i s h e d  q u a l i t  t i v e  



and most convincing evidence on t h i s  po in t  comes from the s tudy of the s c a t t e r i n g  of 
x-rays by coals .  
complex business, and no complejtely adequate treatment has  ye t  been devised. 
method most recent ly  publ ished makes use of a c u r v e - f i t t i n g  procedure, i n  which 
t h e  s c a t t e r i n g  curve c a l c u l a t e d  f o r  var ious  hypothet ical  models i s  compared with 
t h e  curve observed experimental ly .  
f i t  requi red  the suppos i t ion  t h a t  i n  bituminous v i t r i n i t e s  a major i ty  of the carbon 
w a s  organized i n t o  aromatic  n u c l e i  conta in ing  on the  average 2-3 fused r ings.  For  
reasons t h a t  need not be d iscussed  here  the published work does not permit any accura te  
es t imate  of the f r a c t i o n  of carbon atoms i n  such systems nor  any information about 
t h e  o t h e r  carbon atoms. 
r e d  s p e c t r a ,  a r e  t h a t  t h e  a r o m a t i c i t y  i s  between about 60 and 85%, increas ing  with 
rank, though l e s s e r  f i g u r e s  a r e  poss ib le .  
is u n l i k e l y  to  change much t h e  s i z e s  of t h e  nuc le i  quoted above. 

<In  view of i t s  obvious importance, much ingenui ty  has been expended i n  t ry ing  

The i n t e r p r e t a t i o n  of the s c a t t e r i n g  d a t a  is  a d i f f i c u l t  and 
The 

Of the models t e s t e d ,  the  one t h a t  gave the best  

The i n d i c a t i o n s  from the x-ray work, and the s tudy of i n f r a -  

Fur ther  work may a l t e r  t h i s  es t imate  but 

t o  devise  methods of c a l c u l a t i n g  the  a romat ic i ty  from such physical  p roper t ies  a s  
d e n s i t y  and r e f r a c t i v e  index by "physical  c o n s t i t u t i o n  analysis" .  
worth, the  r e s u l t s  a r e  i n  accord wi th  the f i g u r e s  j u s t  given. 

For  what they a r e  

Non-aromatic carbon must be presumed a l i p h a t i c ,  and indeed the  inf raqred  spec t ra  
of v i t r i n i t e s  demonstate t h a t  a l i p h a t i c  mater ia l  i s  present .  J. K. Brown was a b l e  
t o  es t imate  
from the spec t ra ,  and h i s  va lues  have r e c e n t l y  been confirme 
towards h igher  values)  by n u c l e a r  magnetic resonance s t u d i e s  . It appears t h a t  
v i t r a i n s  of carbon content  between 80 and 90% have the  r a t i o  Har/H 
about  0.20 t o  0.50, t h a t  i s  between 80 and 50% of the hydrogen LS :itached t o  
a l i p h a t i c  carbon atoms. 
measured- y inf ra - red  methods, but  the  r e l a t i v e  i n t e n s i t y  of the methyl v i b r a t i o n  a t  
13756cm. ' ind ica tes  t h a t  these  groups a r e  r a r e  compared with CHZ. Nm.r .  d a t a  confirm 
t h i s  , and i n d i c a t e  a f a i r  p ropor t ion  of  t e r t i a r y  + CH. 
lower rank coals ,  the  aromatic  n u c l e i  a r e  h ighly  s u b s t i t u t e d .  

the r a t i o  of aromatic  t o  a l i p h a t i c  hydrogen i n  a s e r i e s  of v i t r a i n s  
with a small rev is ion  $,& ' 

r i s i n g  from 

The proport ion of hydrogen i n  methyl groups cannot be  

The spec t ra  show t h a t  i n  the 

Many workers have s t u d i e d  phenol ic  hydroxyl i n  c o a l s ,  by a v a r i e t y  of methods 
(see refs .  1, 2 f o r  a review). 
oxygen i n  bituminous v i t r i n i t e s  i s  present  a t  t h i s  type of func t iona l  group., Most 
of the balance of the oxygen i s  i n  some form of s t rongly  conjugated carbonyl . 

It i s  e s t a b l i s h e d  that between 40 and 80% of the 

Several  groups of workers have i n v e s t i g a t e d  t h e  dehydrogenation of hydroaromatic 
s t r u c t u r e s  i n  coals ,  and i t  i s  now c e r t a i n  t h a t  much of the a l i p h a t i c  hydrogen i s  

~ ~ ~ ~ ~ y p D .  The proport ion o f  hydrogen removeable by two d i f f e r e n t  dehydrogenation 
r e a c t i o n s  f a l l s  from about 30-40% a t  a carbon content  of 8 2 4 4 %  t o  12-25% a t  89-90% C. 
These f i g u r e s  correspond t o  minimum f r a c t i o n s  of carbon i n  hydroaromatic r ings  i n  
t h e  region of 30 and 12% r e s p e c t i v e l y .  
r e d  spectroscopic  results, i n d i c a t e  t h a t  i n  the average composition of the a l i p h a t i c  
p a r t  of coa ls ,  CHOJ n i s  cons iderably  less than 2 ,  a t  l e a s t  f o r  the  lower rank 
m a t e r i a l s .  This mplies, though does not  prove, t h a t  very l i t t l e  hydrogen o r  carbon 
can  be present  i n  a l k y l  groups o r  non-hydroaromatic a l i c y c l i c  r i n g s  ( i t  should b e  re- 
c a l l e d  t h a t  there  i . ~  no evidence of t h e  presence of  o l e f i n i c  o r  ace ty len ic  groups 
i n  coals ,  which could a l s o  l e a d  t o  a low value of n). 

e x t r a c t s '  give values  between about 500 and 3000. 
conta in  a number of aromatic  nuc le i ,  l inked  toge h 
t o  make a synshesis  of a l l  the above informationEJf6 show t h a t  i t  is  d i f f i c u l t  o r  
impossible  t o  suggest  any type of molecular s t r u c t u r e  t h a t  does not employ the hydro- 
aromatic  carbon a s  a means of l i n k i n g  the aromatic  nuc le i .  
of  t h i s  p r i n c i p l e  is  t h e  1,2- and l ,&cyclohexadiene r i n g  present  i n  t h e  9,lO-dihydro- 

t o  such s t r u c t u r e s  r a t h e r  than to a l k y l  groups o r  o t h e r  forms of a l i c y c l i c  

These data ,  toge ther  with n.m.r. and i n f r a -  

The molecular weights of c o a l s  a r e  not known; determinat ions with so lvent  
Therefore  each molecule must 

by non-aromatic groups. A t t e m p t s  

The most obvious expression 
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35. 
phenanthrene and -anthracene molecules respect ively,  where two benzene r ings  a r e  
l i nked  by two methylene groups whjch complete a t h i r d ,  non-aromatic, r ing .  
p o s s i b i l i t i e f l h a v e  been discussed . 
and Neuworth 
by methylene br idges,  though here  the re  is no necessary impl i ca t ion  t h a t  these 
c o n s t i t u t e  hydroaromatic r ings .  

Other 
The "depolymerization" experiments of Heredy 

a l s o  s t rong ly  suggest t h a t  the  aromatic n u c l e i  a r e  l i nked  toge the r  

We have the re fo re  a r r i v e d  a t  the following p i c t u r e  o f  t he  s t r u c t u r e  of bituminous 
v i t r i n i t e s .  
5 o r  6 fused r ings ,  the  ma jo r i ty  containing 1,2 o r  3 rings.  
con ta ins  few replaceable  hydrogen atoms. 
and carbonyl oxygen, and p a r t l y  a l i p h a t i c  carbon atoms t h a t  are disposed i n  such 
a way a s  t o  c o n s t i t u t e  hydroaromatic r i n g s  and t o  serve a s  l i nkages  connecting the  
aromatic nuc le i  together.  
chains  and perhaps non-hydroaromatic a l i c y c l i c  r ings  ( the  l a t te r  includes the  
cyclopentadiene r i n g  system a s  found i n  indene and f luorene) .  
be very markedly non-planar. 
Fig. 1 shows a segment of a hypothet ical  coa l  molecule. 

Each molecule con ta ins  a number o f  aromatic n u c l e i  con ta in ing  from 1 t o  
Each aromatic nucleus 

The s u b s t i t u e n t s  are p a r t l y  phenolic hydroxyl 

I n  a d d i t i o n  there  is  a minor proport ion of s h o r t  a l k y l  

Such molecules would 
A s  an i l l u s t r a t i o n  of what i s  meant by this  desc r ip t ion ,  

It should be noted t h a t  on t h i s  view each coa l  molecule i s  a t r u e  s t a t i s t i c a l  
sample of the  bulk ma te r i a l ,  i n  the  sense t h a t  each con ta ins  a l l  the known s t r u c t u r a l  
fgatures  i n  approximately the  same proportions.  The o l d e r  v i e w  of coa l  s t r u c t u r e  
a s  a kind of s t rawberry jam, containing lumps of g r a p h i t i c  m a t e r i a l  embedded i n  a 
continuous medium, the bitumen, t he re fo re  becomes meaningless. Furthermore, i n  the 
model proposed t h e a l i p h a t i c  and aromatic p a r t s  a r e  so i n t ima te ly  i n t e g r a t e d  i n  the 
molecular u n i t s  t h a t  one cannot l a b e l  one p a r t  a s  tar-forming and ano the r  a s  coke- 
forming. 

S t ruc tu re  of E x i n i t e  and I n e r t i n i t e  Mate r i a l s  
The e x i n i t e  o r  i e i p t i n i t e  s u i t e  includes a group of components not  der ived.  l i k e  - -  

v i t r i n i t e  and f u s i n i t e ,  from woody t i s sue .  
about which most i s  known, i s  s p o r i n i t e ,  t he  remains of p l a n t  spo res  (indeed, t he  name 
e x i n i t e  is  o f t e n  used to mean on ly  t h i s  type of ma te r i a l ) .  Spor in i t e  con ta ins  con- 
s ide rab ly  more hydrogen, and le s s  oxygen, than the  a s soc ia t ed  v i t r i n i t e .  It i s  less 
so lub le  i n  organic solvents ,  more resistfqt to  oxidat ion,  and has a lower a romat i c i ty  
(see the  exce l l en t  review by J. K. Brown and r e fe rences  the re in ) .  A group of 
spore e x i n i t e s  from B r i t i s h  coa l  seams was found t o  con ta in  more hydroaromatic hydrogen 
(corresponding t o  a minimum f r a c t i o n  of hydroaromatic carbon equal  t o  about 0.4) than 
the  a s soc ia t ed  v i t r i n i t e s ;  less phenolic hydroxyl w a s  foygd, both as a f r a c t i o n  of 
the  weight of coal and as  a f r a c t i o n  of the  t o t a l  oxygen 
about the  same s i z e  a s  those i n  v i t r i n i t e s ,  but  themean i n t e r l a y e r  spacing is l a r g e  
suggest ing t h a t  f5equent occurrence o f  naphthenic s t r u c t u r e s  keeps the  planes a p a r t  
It was concluded 
a s  v i t r i n i t e s ,  but  t h a t  the  molecules a r e  l a r g e r ,  less p o l a r  and more hydroaromatic. 

they s o f t e n  a t  around 400' and acqu i re  a f l u i d i t y  much too high to be measured with a 
Ciessler plastometer.  lEven 60% e x i n i t e  concen t r a t e s  have f l u i d i t i e s  g r e a t e r  than 
20,000 d i v s  pe r  minute . 
which is  so weak t h a t  a di la tometer  p i s t o n  s i n k s  and r e s o l i d i f i c a t i o n  cannot be observ- 
ed t h i s  way. 
e x i n i t e s  than f o r  v i t r i n i t e s  and i s  i n  many cases 70-80%. 

The most abundant member  o f  the  group, 

. The aromatic  n u c l e i  a r e  

f r  . 
t h a t  sporinites probably con ta in  the  same type of molecular s t r u c t u r e  

Ex in i t e s  have a h igh ly  c h a r a c t e r i s t i c  behavior on heat ing.  Of whatever rank, 

They swell enormously to  a t h i n  f r a g i l e  bubble s t ruc tu re ,  

The l o s s  i n  weight i n  t h e  v o l a t i l e  matter test  i s  much g r e a t e r  f o r  

L i t t l e  i s  known of the  o t h e r  members of t he  l e i p t i n i t e  s u i t e .  Res in i t e ,  t he  
,remains o f -p l an t  r e s i n s  and waxes, is widely d i s t r i b u t e d  i n  samll amount, and a l s o  
appears t o  b e  hydrogen-rich and very f l u i d  when heated. The o t h e r  components, c u t i n i t e  
(from c u t i c l e s ) ,  a l g i n i t e  (found only i n  boghead coa l s )  and s c l e r o t i n i t e  (from fungal 
s c l e r o t i a )  a r e  probably of l i t t l e  importance f o r  p re sen t  purposes. 

The i n e r t i n i t e  group con ta ins  two major components, f u s i n i t e  and m i c r i n i t e .  

. 



86. 
F u s i n i t e  c lose ly  resembles charcoa l ;  i t s  carbon content  i s  always over 91%,13t does 
not show f l u i d i t y  o r  swel l ing,  it cont f fbutes  l i t t l e  to  the v o l a t i l e  matter 
chemically i t  i s  r e l a t i v e l y  unreact ive . Micr in i tes  have appreciably higher carbon 
and lower hydrogen contents  than the  assoc ia ted  v i t r i n i t e s ,  though the d i f fe rence  i s  
not so extreme a s  i t  i s  wi th  f u s i n i t e s .  The aromatic n u c l e i  a r e  l a r g e r  than i n  
v i t r i n i t e s .  
and so no spec t ra  have been reported.  
N bromosuccinimide, a reagent  s p e c i f i c  f o r  p lac ing  bromine on a l i p h a t i c  carbon i n  the 
a!-position to  a double tond (e.g. the methyl groups i n  p r  y ne o r  toluene);  t h i s  
suggests  t h a t  a t  l e a s t  some a l i p h a t i c  mater ia l  is  present  ' 3 7 ' g  (see Table I). Both 
a l s o  contain.  some phenol ic  hydroxyl. Micr in i tes  do not swell o r  become f l u i d  o n  
heating. 

, and 

Both m i c r i n i t e s  and f u s i n i t e s  a r e  v i r t u a l l y  opaque t o  i n f r a - r e d  rad ia t ion ,  
Both macerals undergo subs t i tu t im w i t h  

For convenient re ference  some proper t ies  of sets of  macerals each separated from 
one seam a r e  c o l l e c t e d  i n  Table I. Two German and four  B r i t i s h  c o a l s  a r e  included; 
no corresponding da ta  have ye t  been published f o r  American c o a l s  so f a r  a s  the author 
is  aware. 
d i f fe rences  i n  elemental composition, hydroxyl contents ,  e t c .  It w i l l  be not iced 
t h a t  the e x i n i t e s  a s s o c i a t e d  with B r i t i s h  and German v i t r i n i t e s  of c l o s e l y  s imi la r  
rank d i f f e r  considerably i n  y i e l d  of v o l a t i l e  matter. 

Unfortunately r e f l e c t a n c e  da ta  are not  ava i lab le  f o r  the  samples quoted, and 

Data w i l l  b e  found i n  t h e  Table t h a t  support the s ta tements  made above about 

so some r e f r a c t i v e  ind ices  a r e  included a s  an i n d i c a t i o n  of o p t i c a l  p roper t ies .  

Chemical Chnges on Heat ing 
L i t t l e  d i r e c t  experimental  evidence is  a v a i l a b l e  on t h i s  subject ,  but ava i lab le  

information can be u s e f u l l y  supplemented by the r e s u l t s  of experiments on models and 
by predic t ions  from the  type  of s t r u c t u r e  bel ieved to be  present .  

The phenolic hydroxyl conten t  nQ bituminous v i t r a i n s  drops sharp ly  t o  low values 
when the  coal  is heated t o  450-508" 
Peover's method with benzoquinone , suggest t h a t  the hydroaromatic Pgdrogen content  
a l s o  drops sharp ly  i n  a s i m i l a r  o r  somewhat lower temperature range 
spec t ra  of v i t r a i n s  heated t o  400" shows l i t t l e  ch except  t h a t  the a l i p h a t i c  
C-H and phenolic OH absorp t ion  a r e  s l i g h t l y  weake>'?'By 460" a l i p h a t i c  CH is much 
weaker, and OH s l i g h t l y  so; the Har/Hal r a t i o s  of two v i t r a i n s  of carbon contents  
82 and 89% had reached 2.4 (values  f o r  t h e  unheated c o a l s  were about 0.25 and 0.6 
respec t ive ly ,  and f o r  the h igher  rank c o a l  heated to  U O " ,  0.8). By 550" both OH 
and-f l ipha t ic  C-H a r e  very  weak, but  the aromatic C-H bending frequenciesat  700-900 
cm. a r e  s t i l l  wel l -def ined.  Above t h i s  temperature the c o a l s  become opaque, owing 
no doubt to i n c i p i e n t  g r a p h i t i z a t i o n .  No s i g n i f i c a n t  changes. i n  x-ray s c a t t e r i n g  
a r e  observed u n t i l  a v i t r a i n  has  been heated t 2  500°, a t  which temperature the  growth 
of t h e  aromatic n u c l e i  begins t o  b e  no t iceable  . Between 500 and 1000° t h e r e  is  
f u r t h e r  continuous growth, the average layer diameter of one sample, f o r  example, in-  
c reas ing  from A' t o  14A". It w i l l  be r e c a l l e d  t h a t  the  f r e e  r a d i c a l  conten t  of  
v i t r a i n  chars" passes  through a sharp maximum at,500-550", the  maximum r a t e  of 
v o l a t i l e  evolut ion occurs  a t  about 450"; and e l e c t r i c a l  con 
sharp ly  (by many o r d e r s  of magnitude) i n  the range 600-650" 

. Prel iminary experiments on two v i t r a i n s ,  using 

. The inf ra - red  

0 

c t r v i t y  increases  . PY . 

Dryden and h i s  co-workers have s t u d i d  t h e  primary products o f  the evolu t ion  
of v o l a t i l e  matter from v i t r a i n s  by two methods: 
mater ia l  e x t r a c t a b l e  from c o a l s  heated very r a p i d l y  t o  temperatures near 400" ; 
(b) d i s t i l l a t i o n  o r  p y r o l y s i s  of coa ls  spread i n  t h i n  l a y e r s  on a heated p l a t e  i n  a 
high vacuum, a condenser being placed j u s t  above the p l a t e .  
and d i s t i l l a t e  t o  have c l o s e l y  s i m i l a r  i n f r a - r e d  spec t ra ,  and t o  resemble the or ig ina l  
coa l  spec t roscopica l ly  much more c l o s e l y  than a t a r .  
p lay an important p a r t  i n  producing f l u i d i t y  and r e s o l i d i f i c a t i o n  t o  a coke when a 
coking coa l  i s  carbonized. 
the raw coal  and a r e  only  t o  a small e x t e n t  products of decomposition. 

(a) s tudy of the chloroform-soluble 

They f i n d  the  e x t r a c t  

These m a t e r i a l s  appear t o  

They conclude t h a t  the  m a t e r i a l s  mostly e x i s t  a s  such i n  
However, 
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88. 
they are thermally unstable ,  and i n  carbonizat ion a t  a more normal rate of heat ing 
they would undoubtedly decompose i n  s i t u  to  a considerable  extent .  

The temperature o f  maximum r a t e  of vp$afjle evolut ion i s  about t he  same f o r  
e x i n i t e s  and m i c r i n i t e s  a s  f o r  v i t r i n i t e s  . Ladam and Alpern carbonized a 
v i t r i n i t e  concentrate  and an e x i n i t e  concentrate  from the  same coa l  seam a t  600" 
and made a d e t a i l e d  a n a l y s i s  of t he  v o l a t i l e  products by vapor-phase chromatography. 
They found the products from the e x i n i t e  concentrate  t o  con ta in  much more a l i p h a t i c  
ma te r i a l ,  more benzene homologues, more s ide-chain-subst i tuted aromatics  and l e s s  
phenols. This r e s u l t  i s  i n  accord with the  d i f f e rences  i n  s t r u c t u r e  believed to  
e x i s t  between the s t a r t i n g  ma te r i a l s ,  and implies  t h a t  the  process  o f  thermal de- 
composition does not ,  a t  least  i n  t h e i r  condi t ions,  b l u r  the e f f e c t s  of d i f f e rences  
i n  s t ruc tu re .  

It i s  well-known t h a t  t he  C - 0  bond i n  phenols is considerably weaker than the 
C-C, and t h a t  the C-H bond i n  the  a l i p h a t i c  p a r t s  of hydroaromatics i s  weaker than 
aromatic C-H. It i s  the re fo re  reasonable t o  suppose t h a t  when molecules of the  type 
a t t r i b u t e d  t o  v i t r i n i t e s  a r e  heated, the primary changes w i l l  be homolytic d i s -  
s o c i a t i o n  o f  OH groups and l o s s  of hydrogen from naphthenic r ings,  t he  l a t te r  r e s u l t -  
i n g  i n  thermal aromatizat ion.  It is l i k e l y  t h a t  i n  an assembly of l a r g e  complex 
molecules of the type descr ibed,  where the  changes of conf igu ra t ion  required by 
aromatizat ion may be d i f f i c u l t ,  t h a t  some of the  hydroaromatic br idges w i l l  s p l i t  
r a t h e r  than dehydrogenate; t h i s  may be the  means whereby the  aromatic ma te r i a l  found 
i n  tar i s  broken o f f  the  main s t ruc tu re .  These var ious changes w i l l  produce i n  the 
f i r s t  i n s t ance  OH r a d i c a l s  and H atoms, and leave f r e e  r a d i c a l  c e n t r e s  i n  the  main 
s t r u c t u r e ,  which would i n i t i a t e  f u r t h e r  rearrangement and decomposition. 

It i s  w e l l  known t h a t  l i t t l e  molecular hydrogen i s  evolved from coa l s  u n t i l  
temperatures near 600' a r e  reached. The hydrogen released by thermal dehydrogenation 
a t  lower temperatures must be consumed i n  s a t u r a t i n g  f r e e  r e a d i c a l  c e n t r e s  i n  the  
v o l a t i l e  matter and the  residue.  

py ro lys i s  o f  model substances reported by van Krevelen and h i s  co-workersq5theThese 
authors  synthesized a number of polymers containing var ious s u b s t i t u t e d  and unsub- 
s t i t u t e d  aromatic nuc le i  l i n k e d  and cross-linked by methylene bridges.  They found 
tha t ,  on pyrolysis ,  unsubs t i t u t ed  hydrocarbon polymers showed a maximum r a t e  of de- 
composition a t  about 500°, and s p l i t  ex t ens ive ly  a t  the  br idge u n i t s ,  leaving l i t t l e  
s o l i d  (coke) residue. On the o t h e r  hand polymers containing naphthenic r ings ,  o r  s t i l l  
more i f  they contained phenolic hydroxyl subs t i t uen t s ,  showed a maximum r a t e  of de- 
composition a t  considerably lower temperatures and l e f t  a much g r e a t e r  amount of coke 
residue. 
t he  normal depolymerization react ion,  a d i r e c t  condensation proceeding a s  a r e s u l t  
of d i s s o c i a t i o n  o f  the s u b s t i t u e n t s ,  and the  l a t te r  tends to  produce molecular en- 
largement. In support  of t h i s  suggestion of competing r eac t ions  they adduce the  
f a c t  t h a t  when s u b s t i t u e n t s  a r e  present  t he  coke y i e l d  inc reases  g r e a t l y  with de- 
c r e a s i n g  r a t e  of heating. 

These ideas r ece ive  some confirmation from a s e r i e s  of experiments o 

They concluded t h a t  when subs t i t uen t s  a r e  p re sen t  t he re  is ,  competing with 

There & one o t h e r  f a c t o r  t h a t  should be mentioned. The la te  D. H. Bangham 
pointed out  
t o  d i f f u s e  i n  amobile adsorbed f i l m  i n  f i n e  pores t o  the ou t s ide ;  while so adsorbed i t  
i s  exposed t o  surface f o r c e s  t h a t  could promote secondary r eac t ions  and a l s o  could a c t  
as a lub r i can t  i n  promoting f l u i d i t y .  
a m i n i m u m  a t  a carbon con ten t  about 89%, the  magnitude of these e f f e c t s  w i l l  a l s o  
vary with rank. 

t h a t  v o l a t i l e  ma t t e r  evolved in s ide  a p a r t i c l e  of coa l  may w e l l  have 

Since po ros i ty  v a r i e s  with rank, passing through 

There i s  no experimental  evidence bear ing on the chemistry of t he  py ro lys i s  of 
t he  i n e r t  macerals. From t h e  na tu re  of this s t r u c t u r e  one would deduce t h a t  some 



89. 
s t r i p p i n g  of pe r iphe ra l  groups would occur, pe rmi t t i ng  condensation with neighborin? 
molecules, but  l i t t l e  a l t e r a t i o n  of the  bas i c  s k e l e t a l  s t r u c t u r e ,  The behavior of 
i n e r t  maceralsas. seen with the  ho t  s t age  microscope i s  b e a u t i f u l l y  demonstrated i n  
the c o l o r  f i lm  prepared by W. Spackman and h i s  co l l abora to r s .  E x i n i t i c  ma te r i a l  can 
b e  seem t o  l i q w f y  and flow round g ra ins  of i n e r t i n i t e ,  the  morphology of the  l a t t e r  
remaining almost unchanged. 

A Chemical Descr ipt ion of Carbonization 
A syn thes i s  of t h e  information given above permits a f a i r l y  d e t a i l e d  desc r ip t ion  

o f  the  main chemical phenomena of carbonizat ion.  The f i r s t  major change i s  a sof ten-  
i ng  of t he  " v o l a t i l e  solids",  i n  Dryden's terminology, which, i t  i s  suggested, represent  
t he  lower molecular weight, hydrogen-rich, f r a c t i o n  of t he  coa l .  
accompanied by the i n i t i a t i o n  of the  decomposition of t h i s  f r a c t i o n ,  and perhaps a l s o  
of the i n v o l a t i l e  residue, t he  primary s t e p  being d i s s o c i a t i o n  of hydrogen from hydro- 
aromatics,  s h o r t l y  followed by d i s s o c i a t i o n  of OH. 
p r i n c i p a l  secondary r eac t ions ,  one l eav ing  a more aromatic hydrogen-poor ma te r i a l  and 
the o t h e r  a breaking o f f  o f  v o l a t i l e  p a r t l y  aromatic fragments a s  a r e s u l t  o f  the de- 
s t a b i l i z a t i o n  of the main s t r u c t u r e  owing to r a d i c a l  formation i n  i t .  A l imi t ed  amount 
of c ros s - l i nk ing  may a l s o  occur, giving a more s t a b l e  and less v o l a t i l e  res idue.  
These var ious changes, i n i t i a t e d  by d i s s o c i a t i o n  of H and OH, are more o r  less complete 
by about 500-550". By t h i s  s tage,  much of the oxygen has been s t r ipped  off  and. the 
aromatic nuc le i  have not  grown much i n  s i z e  bu t  t he  molecules are more highly cross-  
l inked.  Some of the  f r e e  r a d i c a l  c e n t r e s  produced by decomposition remain as  such, 
"trapped" i n  the carbon matrix.  

This sof tening i s  

These chemical changes cause two 

A t  600-650° enough energy is a v a i l a b l e  t o  break a few aromatic  carbon-carbon 
bonds, so t h a t  the carbon ske le ton  can rearrange and condense t o  l a r g e r  polycyclic 
nuc le i  of lower H/C r a t i o ,  and hydrogen gas i s  re leased.  
t he  p a i r i n g  of the odd e l e c t r o n s  i n  the  f r e e  r a d i c a l  cen t r e s .  The dramatic change 
i n  e l e c t r i c a l  conduc t iv i ty  no doubt r e s u l t s  p a r t l y  from the  growth of t h e  aromatic 
lamellae,  p a r t l y  from the  e l imina t ion  of i n s u l a t i n g  ma te r i a l  between the  lamellae,  
and p a r t l y  from a g r e a t e r  degree of o rde r  i n  t h e i r  stacking. 

These changes a l s o  permit 

These changes no doubt cont inue a t  a diminished r a t e  a t  h ighe r  temperatures s t i l l ,  
and some of the oxygen, n i t rogen  and sulfur i s  s t r ipped  out.  

This desc r ip t ion  probably has  some a p p l i c a t i o n  t o  spof3ni tes  a l so .  But i t  has 
been suggested t h a t  t h e r e  may be a n  a d d i t i o n a l  f a c t o r  here  . The g r e a t e r  i n t e r l a y e r  
spacing i n  e x i n i t e s  and the  less p o l a r  na tu re  o f  the molecules w i l l  cause the  i n t e r -  
molecular fo rces  of adhesion t o  be weaker than they a r e  i n  v i t r i n i t e s .  This may be 
an important cause of the  g r e a t e r  f l u i d i t y  of e x i n i t e s  and the  f a c i l i t y  with which 
v o l a t i l e  ma t t e r  escapes. 
competing react ions,  t h a t  i s ,  t he  d i r e c t  breakdown and the  condensation t o  l a r g e r  u n i t s  
r e s u l t i n g  from d i s s o c i a t i o n  o f  H and OH. 
hydrogen t o  hydroxyl i s  much g r e a t e r  i n  e x i n i t e s  than v i t r i n i t e s .  

Discussion and Conclusions 

chemical by-products from coa l  w i l l  be discussed with r e fe rence  to  hydrogenation, 
carbonizat ion,  and o t h e r  methods. 

Moreover, i t  w i l l  change the  balance between van Krevelen's 

In  any case  the  r a t i o  o f  hydroaromatic 

The relevance of the  above information and speculat ion t o  the  production of 

(a )  Hydrogenation 

high p a r t i a l  pressure of hydrogen, t o  cause hydrogenolysis of a l k y l  groups i n  a lkyl  
It i s  possible  by use of a carbon c a t a l y s t ,  an e l eva ted  temperature,and a 

aromatics  without s a t u r a t i n g  the r ing ;  f o r  example: 

R.CH3 + H2 + B.H + CHq. 



90. I d e a l l y ,  t h i s  is  i n  e f f e c t  what one would wish t o  do i n  t h e  hydrogenation of c o a l ;  

and t h e  individual  aromatic n u c l e i  would be  re leased  a s  a mixture o f  r e l a t i v e l y  simple 
phenols, hydrocarbons and perhaps quinones o r  quinols .  However, i f  the 1,2-cyclo- 
hexadiene type of l i n k i n g  u n i t ,  a s  i n  9,10-dihydrophenanthrene, were common, s t a b l e  
s i n g l e  l inkages between aromatic  n u c l e i  would remain i n  the product. Thus f o r  
example dihydrophenanthrene i t s e l f  would give diphenyl and e thane, whereas the 
isomeric  dihydroanthracene would give benzene and methane. 

hydroaromatic p a r t s  of t h e  s t r u c t u r e  would be el iminated as methane and ethane 

There a re  of course p r a c t i c a l  d i f f i c u l t i e s  i n  contac t ing  s o l i d  coa l  with a 
s o l i d  c a t a l y s t .  For t h i s  reason, and because of  the complexity of coa l  s t r u c t u r e ,  
such s e l e c t i v i t y  of hydrogenolysis is  improbable. It i s  more l i k e l y  t h a t  p a r t i a l  
o r  complete s a t u r a t i o n  of t h e  aromatic  n u c l e i  w i l l  precede any extensive hydrogenoly- 
sis of the  l ink ing  u n i t s .  
naphthenic s t r u c t u r e  i n  which t h e r e  i s  nothing t o  d i s t i n g u i s h  between the  l i n k i n g  
and aromatic p a r t s  of the o r i g i n a l  s t r n c t u r e  (except perhaps some oxygen s u b s t i t u e n t s  
and he terocycl ic  atoms). 

Once s a t u r a t i o n  occurs, w e  a r e  l e f t  with an extended 

Perhaps, then, from a chemical point  of view t h e  b e s t  hope of breaking down 
coa l  s t r u c t u r e  t o  usefu l  products  by hydrogenation i s  t o  proceed i n  two s teps ,  f i r s t  
a c a t a l y t i c  addi t ion  of  hydrogen t o  the aromatic p a r t s ,  and then a cracking,  perhaps 
wi th  a conventional c racking  c a t a l y s t  i n  a h igh-boi l ing  o i l .  

The above remarks should apply e q u a l l y  to e x i n i t i c  mater ia l .  
one needs, i n  o r d e r  to make a good coke, an  optimum f l u i d i t y  and not a maximum. 
view of the  d i f f i c u l t i e s  of r e a c t i o n s  involving two s o l i d  phases, i n  hydrogenatior, 
the maximum f l u i d i t y  i s  c l e a r l y  des i rab le ,  and so the  g r e a t e r  the e x i n i t e  content  of 
the raw mater ia l  the  b e t t e r .  I n d e e d  i t  would be  des i rab le ,  i f  economically f e a s i b l e ,  
to  use a blend of a coa l  with a black dura inor  o t h e r  e x i n i t e  concentrate .  

In  carbonizat ion 
I n  

On the  o ther  hand the i n e r t  components a r e  two g r a p h i t i c  t o  b e  a t  a l l  r e a d i l y  
hydrogenated and broken down, and inasmuch a s  they w i l l  tend to  decrease f l u i d i t y  
a r e  undesirable  contaminants of the raw mater ia l  f o r  hydrogenation. 

(b) Carbonization 
Carbonization of coa l  i s  c a r r i e d  out  i n  t h e  U;S:A. almost e n t i r e l y  f o r  the 

purpose of making coke, and it i s  doubtful  how f a r  the process can be  modified merely 
to  improve t h e  y i e l d  o r  q u a l i t y  of by-products. However, s ince the purpose of t h i s  
paper i s  to  d iscuss  the  b a s i c  chemistry involved, t h i s  f a c t o r  i s  ignored i n  what 
follows. 

It seems l i k e l y  t h a t  both the t o t a l  y i e l d  of chemicals from coal  carboniza- 
t i o n  and the content  of usefu l  m a t e r i a l s  w i l l  increase  with the e x i n i t e  content  
of the charge, even though in commercial opera t ion  the v o l a t i l e  mat te r  i s  exposed 
t o  much secondary change. Since t h e  y i e l d  of v o l a t i l e  mat te r  from e x i n i t e s  i s  so 
much (50-100%) g r e a t e r  t h a n  t h a t  from v i t r i n i t e s ,  the r e l a t i v e l y  small amount (10- 
25%) commonly found i n  whole coa ls  charged t o  coke ovens can make a very s i g n i f i -  
c a n t  cont r ibu t ion  to  the v o l a t i l e  mat te r  co l lec ted .  Moreover the d i f fe rences  i n  
behavior between d i f f e r e n t  c o a l s  of apparantly similar rank may be due i n  p a r t  t o  
d i f f e r e n c e s  i n  t h e i r  conten t  of s p o r i n i t e  and r e s i n i t e .  The i n e r t  macerals w i l l  
decrease the y i e l d ,  not  merely because they a r e  r e l a t i v e l y  i n e r t  d i l u e n t s  but iilso 
because they are l i k e l y  t o  be e f f i c i e n t  f r e e  rad ica l  t r a p s  i n  the e a r l y  s tages  of 
t h e  r e l e a s e  of v o l a t i l e  mat te r .  

Coking blends commonly conta in  the b a s i c  coa l  t o  provide the bulk of the coke 
matrix, a comrJonent designed t o  increase f l u i d i t y  to  t h e  des i red  ex ten t ,  and an 
i n e r t  d i l u e a t  t o  increase  the  coke hardness. Clear ly  there  a r e  l i k e l y  to  be a 
range of three-component mixtures  t h a t  w i l l  g ive  the d e s i r e d  r e s u l t .  
l e a s t  a theore t ica l  p o s s i b i l i t y  t h a t  one could s e l e c t  a mixture within the range 
such t h a t  i n e r t i n i t e  i s  used a s  l i t t l e  a s  poss ib le  a s  an  i n e r t  d i l u e n t  and e x i n i t e -  

It is  a t  
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conta in ing  mater ia l  is  used b o t h  t o  c o n t r i b u t e  f l u i d i t y  and t o  increase  the y i e l d  91 * 
of by-products. 

might carbonize,  perhaps i n  a f l u i d i z e d  bed, i n  the presence of a d d i t i v e s .  Addi- 
t i v e s  could be gaseous and inc lude  steam and a l i t t l e  a i r ,  o r  be a s o l i d  and con- 
s i s t  of a c a t a l y s t  designed t o  a s s i s t  the  breakdown of v o l a t i l e  matter t o  simpler 
m a t e r i a l  immediately on release from t h e  coa l  p a r t i c l e s .  In any case  i f  one 
wishes t o  i n t e r f e r e  with the carboniza t ion  mechanism i n  t h i s  o r  i n  any o t h e r  way, 
one must obviously do i t  i n  the  d i s s o c i a t i o n  s t a g e  (380-480°) o r  e a r l i e r .  

I f  s t i l l  f u r t h e r  depar tures  from present  p r a c t i c e  can be considered,  one 

(c) Other Methods 

a v a r i e t y  of  monomer units l inked  toge ther  by a r e l a t i v e l y  weak bond. as i n  
A t  one time i t  w a s  thought. t h a t  coa l  might be l i k e  a polymer i n  conta in ing  

- 
c e l l u l o s e .  This view can  no longer  be maintained; 
conside'r coa l  a type of polymer, t he  l i n k i n g  u n i t s  are not  weak but  very s t rong.  
The hopes of  f ind ing  a simple economically f e a s i b l e  means of breaking t h e  s t r u c t u r e  
down i n t o  usefu l  chemicals a s  main r a t h e r  than by-products are therefore  small. 
The depolymerization oflcoal with t h e  boron t r i f l u o r i d e / p h e n o l  complex, descr ibed 
by Heredy and Neuworth, i s  a very  i n t e r e s t i n g  c o n t r i b u t i o n  to  t h i s  problem and 
w i l l  no doubt be developed f u r t h e r .  

The c l a s s i c a l  organic  chemis t ' s  answer t o  the  problem of breaking down a 
mixed a l ipha t ic -aromat ic  s t r u c t u r e  i s  s e l e c t i v e  oxida t ion  of  t h e  a l i p h a t i c  par t s .  
It has so f a r  proved impossible to o x i d i z e  c o a l  s e l e c t i v e l y  i n  t h i s  sense, but  i n  
any case  a range of aromatic  a c i d s  w i l l  be t h e  p r i n c i p a l  products ;  these may have 
p r a c t i c a l  appl ica t ions ,  but n e c e s s a r i l y  only i n  a s t r i c t l y  l i m i t e d  f i e l d .  The 
f l u o r i n a t i o n  procedure descr ibed  by Farendon and Pri tchard27 i s  another  r e a c t i o n  
t h a t  might give chemical products  usefu l  i n  a l i m i t e d  f i e l d .  

p r ices ,  i t  might be poss ib le  t o  use e x i n i t e  concent ra tes  a s  raw m a t e r i a l s  f o r  
chemical processing, and they possess  c e r t a i n  advantages. 
t h a t  should b e  explored f u r t h e r .  The cannel and boghead c o a l s  a r e  descr ibed  as 
being l a r g e l y  e x i n i t e ,  but  i n  view of  t h e i r  d i f f e r e n t  o r i g i n  it seems doubtful  
whether they a r e  very similar t o  the  e x i n i t e  m a t e r i a l  assoc iared  with bituminous 
coals .  However, they n ight  be usefu l  s t a r t i n g  mater ia l s .  

i n  so f a r  a s  i t  i s  j u s t  t o  

Provided the bulk of t he  products  could be s o l d  a t  chemical r a t h e r  than f u e l  

This  i s  a p o s s i b i l i t y  
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FIGURE 1. Hypothetical segmenr of u 

bituminous cod. 
typical molecule in a 


